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Abstract. In this paper we construct a new quantum double by endowing the /-state boson 
algebra w4th a non-trivial Hopf algebra structure, which is not a qdefomation of the Lie 
algebra or superalgebra. The universal Rmatrir for the Yang-Baxter equation associated 
with this new quantum group structure is obtained explicitly. By building the representations 
of this quantum double, we obtain some R-matrices which can result io new representations 
of the braid group. 

1. Introduction 

Recently, the quantum Yang-Baxter equation (QYBE) and its quantum group theory 
have attracted great interest from both theoretical physicists and mathematicians 
[I-31. This is because the QYBE is a key to the complete integrability of many physical 
systems appearing in quantum inverse scattering methods [4,5], exactly-solvable models 
in statistical mechanics [6] and low-dimensional quantum field theory [7,8]. In solving 
the QYBE and classifying its solutions (R-matrices) in a generally algebraic way, an 
important mathematical structure-the quasi-triangular Hopf algebra (loosely called 
the quantum group) has been found in connection with the QYBE [9-121. Among these 
studies, the Drinfeld’s quantum double (QO) [9] theory provides one with a powerful 
method to systematically obtain solutions of the QYBE. Some developments and detailed 
constructions based on Drinfield’s theory have been given by many authors [13-161. 
Concrete quantum doubles usually are the ‘q-deformations’ of certain algebras as non- 
co-commutative quasi-triangular Hopf algebras and we call them standard quantum 
doubles. Recent studies show that not only the standard R-matrices [13-151 but also 
the non-standard ones [17-191, which are obtained by direct matrix calculations, such 
as the coloured R-matrices [20], can be obtained in the framework of Drinfeld’s QD 
theory. For the latter, the cyclic representations and other non-generic representations 
at roots of unity [21-281 must be considered [29-321. In fact, the cyclic representations 
were also used to construct the R-matrices with non-additive spectrum parameters 133- 
411. These studies implied the fact that the ‘new‘ representations of the original standard 
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quantum doubles may lead to ‘new’ R-matrices for QYBE. A subsequent question natu- 
rally is whether there exist ‘new‘ quantum doubles that result in ‘new’ R-matrices. The 
answer is ahnat ive.  More recently, it has been shown that the parametrization of the 
standard quantum doubles can also enjoy some non-standard and coloured R-matrices 
142,431 directly. The purpose of the present paper is to search for a class of new 
quantum doubles that are neither those standard quantum doubles nor their parametriz- 
ations and then to use them to find the new universal R-matrices for the QYBE. Since 
the obtained new quantum doubles are not the q-deformations of any algebras and 
homomorphisms to the [-state boson algebras (I= 1 , 2 .  . .) as associative algebras, we 
will call them non-standard quantum doubles associated with the boson algebra. 

To begin our discussion conveniently, we need to outline some basic ideas in 
Drinfeld’s QD theory (for reviews see [44 ,45 ] )  so that the notation used in this paper 
can be clarified. Suppose we are given two Hopf algebras A ,  B and a non-degenerate 
bilinear form ( , ) : A  x B+C (the complex field) satisfying the following Conditions: 

(a, b W =  ( A M .  b&W 

(ataz, b )  = ( a B a l ,  A&)) 

a E  A ,  6 ,  , b 2 s  B. 

al , a 2 s  A, b s A  

( 1 ~ ~  b)=&.db)  b e B ,  (1.1) 
(a, ~ B ) = & A @ )  a s A  

 SA(^. s&)> = (a, 6 )  a s A ,  b s B  

where for C= A ,  B,  A=, E= and Scare the co-product, co-unit and antipode of C respec- 
tively; I C  is the unit of C. Drinfeld’s QD theory states the central results as follows. 

Using (l.l), we can find a Hopf algebra D, the quantum double, satisfying the 
following conditions 

1. D contains A and B as Hopf subalgebras; 
2. The mapping A x B+D :a@b-tab is an isomorphism of vector space; 
3. For any E A ,  bEB, we have the multiplication 

where ci(k)(k= 1,2, 3 ;  c=a, b )  are defined by 

A ~ ( ~ ) = ( ~ ~ o A ) A ( c ) = ( A B ~ ~ ) A ( ~ ) = c  c , ( ~ ) ~ c i ( 2 ) ~ c i ( 3 ) .  
i 

Furthermore there exists an unique element 

$=E a,@b,EA x B c  D x D 
m 

obeying the ‘abstract’ QYBE 
^ ^ ^  

~ I ~ ~ I P % ~ = R ~ R I ~ R I ~  (1.3) 
where a, and b, are the basis vectors of A and B respectively, and they are dual to 
each other, i.e. (a., , b.) = ?I,,,,”; 

k 1 2 = C a , @ b ~ @ l ,  k13=Cam@l@b,, &,=E I@a,@b,. 
m m m 

Notice that the usual quantum double is obtained by taking the subalgebra A in 
the above construction to be a Bore1 subalgebra of the universal enveloping algebra 
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(UEA) of the classical Lie algebra and Lie superalgebra [ 141. It is only a q-deformation 
of the UEA or its parametrization. In this paper we will build a different quantum 
double based on Drinfeld’s theory. This paper is arranged 3s follows. In section 2, we 
take a ‘half‘ of the I-state boson algebra as the Hopf subalgebra A with co-commutative 
coproduct in the QD construction and then built its quantum dual as a non-co-commut- 
ative but commutative Hopf subalgebra B. Then, we combine A and B to form the so- 
called non-standard quantum double D and thereby obtain the new universal R-matrix 
for the QYBE. In section 3, we generally study the representation theory of this quantum 
double and built the basic construction for its representations. In section 4, we use 
explicit finite dimensional representations to obtain the new R-matrices for the QYBE 
from the obtained universal R-matrix. Finally, in section 5, we give some remarks on 
the construction in this paper and its relations to some recent works given by both 
other and present authors. 

2. The non-standard quantum double D as a boson algebra and its universal R-matrix 

Let us consider an associative (C) algebra A generated by m, 6, , ( i2 ,  . . . , ci, satisfying 

We can regard A as a ‘half’ of the /-state boson algebra generated by creation operators 
a:=&. annihilation operators a, and the total number operator N. By endowing A 
with the following structures (A, E, S): 

A: A-+A x A :  A(xy) =A(x)A@) A ( x ) = x O I + I @ x  

& : A  - c: E(X4’) = E ( X ) E b )  E ( X ) = O ,  &(1)=1 (2.2) 
S: A+ A : S(xy) = S@)S(x)  S(x)=-S(x), S(l)=l. 

For x=#, Z,, the algebra A becomes a co-commutative Hopf algebra. In fact, it is 
trivial to define such a Hopf algebra since we can regard A as a universal enveloping 
algebra of a Lie algebra with basis &’, &(i= 1,2, . . .). However, since A is non-commut- 
ative, its dual A * = B  with opposite co-product As=A must be non-co-commutative. 
Now, we try to determine the generators and the structure relation for B. 

According to the PoincarC-Birkhoff-Witt (PBW) theorem, the basis for A can be 
chosen as 

p(m. n,)=z(m: n , ,  n z ,  . . . , n,)=$*. . . ZP’ 
where m, n , ,  n z ,  . . . . n,eZ+= (0, 1,2,. . .). On this basis, the generators N and 
a,(i= 1,2, . , . , I )  dual to Nand ai respectively are defined by the following conditions 

where x is a basis element other than % and y other than a,. 

ately have 

Proposition 1. 

Since the dual of a co-commutative Hopf algebra must be commutative, we immedi- 

B is an Abelian algebra with the commutative generators Nand ai ( i=  
1, 2. . . . , 1). 
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Let us extend the bilinear mapping (,)'defined only for the generators to all the 
vector pairs in A x B. 

Proposition 2. 

(P, N") = 6, 

(Z(m, ni), ai'@. . . u?W)=m!nt!n2!.  . . nr!6,,36 ",,,, . . . 6 ",.,,. 
(ET, a;) = m !6,,6,, 

(2.4) 

Prooj 

(m-, ")=(A(") N"-'Q,N) = (A(R)'", N"-'QW 

= m ( P " ' ,  N"-')=. . .=m!6, ,  

The other parts of this proposition can be proved in a similar way. 

Sand the co-unit E. 

Proposition 3. 

As for the Hopf algebra structure of B, we have to iind the coproduct A, the antipode 

A ( N ) = N Q l + 1 Q N , A ( a i ) = a i @ e N + l Q a i , i = l , 2 ,  .. . , I )  

s(N)=-N, S(~ , )=-e-~a , ,  S ( l ) = l  (2.5) 

E ( N )  = 0 = &(ai) E ( I ) = l .  

Proox Notice that the linear form <, A(a,))  is non-zero only on &QI,  lQZi, 
& @ P ( m  = 1,2, . . . ). In fact, 

(Z,@ 1, A(u,))=< 1 QZi,  A(ai)) = ( Z t .  U,) = 1 

(Zj@#", A(aj))= (Rmcij, ai)=(&(*+ ai)= 1. 

Consequently, we have 

=ai@eN+ l@ui .  

The other parts of this proposition can be proved in the same way. 

Knowing the Hopf algebraic structure of 5, we need to derive the relations between 
A and B so that they are combined with each other to form a new quantum double D. 

Proposition 4.  

[ Z j ,  aj]=6,{eN- 1) 

[ N ,  a,) = -ai 

[ N ,  everything] = 0. 
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Proof: Using the ( 1.2) and 

A2(aj)=al@eN@eN+l@ai@eN+ lQlQa,  

A z ( r i j ) = d j ~ l @ l + i ~ l l i j @ i + l @ , @ ~ ,  

we have 

airi, = (si, S(aj)> ( 1 .eN)l .eN+ ( 1.1 ) ( 1 .eN)ii,a;+ (1, 1 ) (si, ai>l. 1 

= -eN+ ciaj+ 1 

which lead to the first question in (2.6). The other equations can be proved in the same 
way. 

From propositions 1-4, we know that the basis for A dual to Z[m, nj] can be chosen as 

a;'aY. . . a;"" 
m!nl!nz! .  . . nl!  

e[m.n,] = 

Then, we immediately write down the universal R-matrix of D 

= fi exp(EjQai) exp(&W). 
i= I 

(2.9) 

3. 00 the representation theory for the quantum double D 

To get finite dimensional R-matrices from the universal R-matrix, we have to find the 
non-trivial finite dimensional representations of the quantum double D. In the following 
discussion, a representation T of D in which T(x) = 0 for certain generators x of D are 
thought to be trivial. 

Proposition 5. 
dimensional. 

AU the non-trivial irreducible representation of D must be infinite 

Proox We prove this proposition only for the case of 1=2 and the proof for the 
arbitrary I is routine. Suppose that there exists a non-trivial finite dimensional irreduc- 
ible representation T:  D-+End( V )  (for simplicity we denote T(x) by x in the following). 
According to the Schur lemma, the central element N must be a non-zero scalar 5, i.e. 
N =  CZO. For the algebraically-closed field C, there exists a vector D such that 

Rv = qv( q E c). 
Since a series of eigenvectors U, (71, i:v, . . . , ~ T V , .  . . , of N correspond to different 
eigenvalues q, 7 + 1, . . . , q + n, . . . , they are independent linearly. Due to the finite 
dimension of V there must be a non-zero extreme vector U such that 

u=cfv,  Li,u=o. 
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Similarly, for other vector series U, &U, &U, . . . , we have 

(iz(&-I)u=aSu= 0. 

Let u(2)=(i9,-lu. Then, 

i;u(2) =o i= 1,2. 

It can be proved that 

W=span{f(m, n)=&diu(2)lm, a d ' }  

is an invariant subspace in V under the action of D. Because Vis finite dimensional, 
there must he w and ZEZ' such that 

Q ~ X W -  1, O)=a;u(2)=0 

azflO, ~ - l ) = a i u ( 2 ) = 0  

that is to say, the dimension of W is zw. Because of the irreducibility of V, IV= V. On 
other hand, 

O=rilaYu(2) = -w( I -ec)a;-'u(2) 

that is w = O ;  similarly z=O. Then, one comes to a contradictory conclusion that the 
representation space V has dimension zero! 

According to the above proposition, the non-trivial finite dimensional represen- 
tations of D are only indecomposable, i.e. reducible but not completely reducible, if 
they are not the direct sums of some trivial representations. Therefore, the non-trivial 
R-matrices of D should he associated with the indecomposable representations of D. 

To construct such representations of D explicitly, let us define the Fock-like space 
F(I) : 

~ ( I ) = s p a n { l ~ j , p ) = ( i ~ ' ( i ~  . . . (i;"EplO)lp, m = O ,  1, 2, . . .; i = l ,  2, . . . , I )  

where the vacuum-like state IO) obeys 

a;lO> = o, Nlo) = plo) p d .  i =  1,2, . . .1.  

On this space, we get an infinite dimensional representation p ( p ) :  

where we have defined 

N=ln(l-E) or E=l-e". 

Notethat all thevectorsltnj,p)satisfyingml+m2+. . , + m j + p ~ K ~ ~ s p a n a n i n v a r i -  
ant subspace V(K). Its quotient space 

Q(K, ~)=F(l)/V(K)=span{lm!p) mod V(/olml+mi:+. . . + m r + p < K - l }  
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is finite dimensional and a finite dimensional representation Fpa of D can be induced 
in this quotient space. Its dimension is 

To write the above k i t e  dimensional representation explicitly, we d e h e  

for 

and 

where 

el=(l ,O, 0,. . . , 0, 0) 

e2=(0. 1, 0,. . . , 0, 0) 

eI=(O, 0, 0,. . . , 1, 0) 

e/+l=(O,O,O,. . . ,O, 1) 

are the unit vectors in the lattice space 
+ ._ z'" : { M = (m, , mz , . . . m,, p )  1 m, , p E Z  , ,J - 1, 2, . . . l}. 

Note that the representatives of N k  can be given through (3.3) and 

N k = f  C ( K ) F  
9=0 

(3.3) 

(3.4) 

where C(K), can be explicitly determined. 
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4. An example of a new R-matrix for the quantum double D 

Using the above obtained finite dimensional representation 7",M defined by (3.2), the 
new R-matrix can be constructed as 

R ( H I , H ~ ) ~ - R O ~ I , ~ ? ; K I , K ~ )  
= ~ 1 . K 1 ' O ~ ( B z , K 2 ) ( ~ ) ~ E n d [ Q ( K l ,  pl)@Q(Kz, p2)] .  

The general construction of quantum double theory maintains that the above R-matrix 
satisfies the QYBE. Here, the extra parameters p appear as the colour parameters 1201 
which, in general, are different from the non-additive dynamic spectrum parameters 
such as in the exactly-solvable models in statistical mechanics [33-41] .  Let 

1;(W = f X , l M )  i =  1, 2. 

We can calculate the elements for R(H,, H2) in terms of the following actions 

R ( S ,  Hz)h(Mi)@h(Md 

+($] fl;+k)e,+4 

where x,, for x=j, k,  n,, j =  1,2, . . . , I  are the maximum values that x can take so that 
all the terms in the above expression make sense. Now, we consider an extremely 
special example with KI =K2=2=l, p1 = p z = p .  In this case, the corresponding infinite 
dimensional representation of D 

61lm.n, P>  = Im + 1, n, p >  

Z21m, n, P)=lnz.n+ 1, p )  

a l l m . n , p ) = m l m - l ,  n , p + l )  

azlm, n,p)=nlnt ,  n -  1 , p +  I )  

4 m ,  n , p ) = l m ,  n , p + l )  

m m ,  n , p ) = ( m + n + p ) l w  n . p >  

induces a fourdimensional representation on Q(K= 2, p )  

61=E(2, 1) 62=E(3, 1) E=E(4,  1) 

a,  =E(4, 2) a2 = E(4, 3 )  N=E(4 ,  1 )  

N = p E ( l ,  l)+(l+p)(E(2, 2 ) + E ( 3 ,  3 ) ) + p E ( 4 ,  4) 

(4.1) 

(4.2) 
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where E( i , j )  is 4 x 4 matrix unit such that E ( ~ , J > ~ . ~ =  ; 

lm,p,n)=l ,m,=m,m~=n,p) .  

Through the universal R-matrix, this explicit representation of D results in a 16 x 16 
R-matrix 

I f p N  0 0 

ai(I+pN) f + ( l + p ) N  0 

0 0 0 

_i ~ z ( ~ + c I N )  0 1+(1+p)  0 

where p is a complex parameter and I a 4 x 4 unit matrix. 

5. Remarks 

1. The usual quantum doubles are the q-deformations of the universal algebras and 
possess a ‘standard’ quantum double structure such that both the subalgebras A and 
Bare non-commutative and non-co-commutative. This symmetric structure reflects the 
duality of A and B. Note that these standard quantum doubles approach the usual 
universal enveloping algebras (UEA) in the classical limit q+l. In this paper, we have 
constructed so-called non-standard quantum doubles that are not those q-deformations 
and possess asymmetric dual structure such that one of the subalgebras A and B is 
commutative but non-co-commutative and another co-commutative but non-commut- 
ative. As new quasi-triangular Hopf algebras, these QOS naturally enjoy the QYBE, but 
they have not the usual classical limit. 

2. Up to now, we have established new quasi-triangular Hopf algebra as the quantum 
double D of A and B, which is defined by (2.1), (2.5), (2.6) and proposition 1. Now, 
we show how the h a t e  boson algebra can be embedded into the quantum double D 
as a Hopf subalgebra. To this end, we use E= 1 -eN and assume E -  1 is invertible. 
Then. 

[az, Zj] = 6,E [E,  everything] = 0 (5.1) 

that is to say, the operators Z,, ai and behave as creation operators, annihilation 
operators and the number operator respectively. They just genemte the (-state boson 
algebra. The structure of the quantum double D naturally induces for the Cstate boson 
algebra a Hopf algebraic construction 

A(GJ=G~@(I  -J?)+ l@aj 

A ( E ) = E @ E -  E@ 1 - 1 @ E  

ai S(ai)=--, S(I)=I E S(C)=-= I - E  
(5.2) 

&(ai) = 0 = &(E) &(1)=l. 

The above discussion shows that the usual boson algebra enjoys the quantum group 
structure as well as the q-deformed boson that realized quantum algebras [46-481. 
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3. In a recent paper [49], from the simplest non-co-commutative Hopf algebra with 
two commuting generators, we built a quasi-triangular Hopf algebra H a s  its quantum 
double which is non-commutative. As an associative algebra, it is similar to the result 
obtained in [ S O ]  by taking a limit of a q-deformation of SU(2).  It is easy to observe 
that this algebra H i b  just an isomorphism to the special case with I =  1 of the general 
non-standard quantum double in this paper. The method in [46] can be regarded as 
an inverse process of that in this paper in a special case. This means that the inverse 
construction of the present study possibly shows a ‘quantization’ from commutative 
objects to certain non-commutative ones. 
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